<R과 함께하는 다변량 자료분석>을 사랑해 주시는 독자들께.

먼저 오류(치명적인 오류 포함)가 많아 죄송합니다. 발견이 되는대로 장별로 정오표를 수정해서 올리겠습니다.

1차 3월 29일/2차 4월 29일/3차 5월 31일/4차 7월 24일/5차 2019년 3월 12일

1장 MDA	오	정
6 13째 줄	유용한 그림이다. 다만, Mechanics의	유용한 그림이다. 각 변수의 줄 기 값은 자료의 수치 값에서 십의 자리 수로 0은 0과 1, 2는 2와 3, 4는 4와 5, 6은 6과 7, 8은 8과 9 이다. 예를 들자면, Mechanics의
61	for Normailty	for Normality
61 (1.8.4)	$b_{2p} = \frac{1}{n} \sum_{r=1}^{n} \sum_{s=1}^{n} m_{rr}^{2}.$	$b_{2p} = \frac{1}{n} \sum_{r=1}^{n} m_{rr}^{2}$

2장 PCA	오	정
102	해석: 산점도 (a)와 (b)의(a)는	해석: 산점도 (a)와 (c)의(a)는
102	위쪽으로 (b)는 오른쪽으로	위쪽으로 (c)는 오른쪽으로

3장 FA	오	정
145 [표 3.4.1]	[6단계] $\widehat{\psi_{y_j}} = \sigma_{jj} - \sum_{k=1}^m \lambda_{jk_y}^{\widehat{2}}$	$\widehat{\psi_{y_j}} = s_{jj} - \sum_{k=1}^m \widehat{\lambda_{jk}}^2$
146	$\hat{oldsymbol{\Lambda}} = oldsymbol{\Lambda}_y = egin{bmatrix} k=1 & 0 & 0 \\ \widehat{oldsymbol{\Lambda}} = oldsymbol{\Lambda}_y = egin{bmatrix} \sqrt{l_1} oldsymbol{v}_1,, \sqrt{l_m} oldsymbol{v}_m \end{bmatrix}$	$\widehat{\Lambda} = \widehat{\Lambda_y} = \begin{bmatrix} \sqrt{l_1} \boldsymbol{v}_1,, \sqrt{l_m} \boldsymbol{v}_m \end{bmatrix}$
150	$\lambda_{jk} = \sqrt{l_k} v_{jk}$	y [VIII V me ne]
[丑 3.4.2]	$h_i^2 = \lambda_{i1}^2 + \lambda_{i2}^2$	 삭제
151	$\psi_j = 1 - h_j^2$	1 "
[표 3.4.3]	$\psi_j = 1 - n_j$	
154	$= -\frac{n}{2}log 2\pi\Sigma - \frac{n}{2}tr(\Sigma^{-1}S)$	$= -\frac{n}{2}log 2\pi\Sigma - \frac{n}{2}tr(\Sigma^{-1}S_n)$
154	2	여기서 $S_n=(n-1)S/n$ 이고 일반적
	글린ㅋ스포	으로
154	S	S_n
식 (3.4.10)		16
154	$egin{array}{c} \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C}$	S_n
		공통인자 수 우도비검정
157	공통인자 수 우도비검정	은 [R-코드 3.4.3]에서 함수 factanal()
107	은 검정통계량값이	의 결과인 mlfa로부터 제공된다. 검정
160	miles for the mal(7) for the man = 2, which is mall a main a mall	통계량값이
160	mlfa<-factanal(Z, factors = 2, rotation="varimax")	mlfa<-factanal(Z, factors = 2, rotation="varimax") mlfa
[R-코드 3.4.4]		여 시계 반대 방향으로 회전이 이
162	여 시계 방향으로 회전이 이루어진	
173	[그림 3.6.2] PCMA의 인자점수그림	[그림 3.6.2] PCFA의 인자점수그림
	$(2.6.5)$ 의 행의 개체를 위한 $H_{(m)}$ 과	$(2.6.5)$ 의 열의 변수를 위한 $H_{(m)}$ 과
180	열의 변수를 위한 $G_{(m)}$ 에 근사적으로	행의 개체를 위한 $G_{(m)}$ 에 근사적으
	일치한다.	로 <mark>각각</mark> 일치한다.
		바란다. 공통인자 수에 대한 우도비
184	바란다.	검정의 결과는 함수 factanal()의 결과
		인 mlfa로부터 제공된다.

4장 CCA	오	정
	제1정준변수 쌍	제1정준변수 쌍
201	Z_{x1} Z_{y1}	Z_{x1} Z_{y1}
[丑 4.2.2]	-0.057 -0.071	-0.057 -0.071
	0.051 0.081	-0.051 -0.081
201 해석:	제1정준변수의 계수를 보면 모두 양(+)이고 그 값이 다소 크므로 머리길이와 폭의 합을 나타내며 머리둘레로 해석될 수 있다. 특히, 장남의 머리 크기 변수 $(x_1,x_2)=$ (X1.flength, X2.fwidth)은 모두 높은 가중치를 가진다. 차남의 머리 크기 변수군 $(y_1,y_2)=$ (Y1.slength, Y2.swidth)에서 변수 Y2.swidth가 Y1.slength보다 다소 높은 가중치를 가지다.	길이와 폭의 합을 나타내며 머리둘레로 해

5장 CA	<u> </u>	정
232	만약에 임의의 라하고 \bar{x}_{gr} 과 s_{gr}^2 을 g 번째 그룹의 평균과 분산이라 를 정의하며 그룹간의 마할라노비스 거리로 다음을 정의하고 있다. $d_{hk} = \left[(\bar{\boldsymbol{x}}_h - \bar{\boldsymbol{x}}_k)^t S^{-1} (\bar{\boldsymbol{x}}_h - \bar{\boldsymbol{x}}_k) \right]^{1/2}$	만약에 임의의 라하고 \overline{x}_{gr} 과 s_{gr}^2 을 g 번째 그룹의 자료에서 r 번째 변수의 평균과 분산이라 를 정의하며 그룹간의 마할라노비스 거리로 다음을 정의하고 있다. $d_{hk} = \left[(\overline{x}_h - \overline{x}_k)^t S^{-1} (\overline{x}_h - \overline{x}_k) \right]^{1/2}$ 여기서 각 군집 자료행렬의 평균벡터를 \overline{x}_{hr} \overline{x}_k 라 하고 S 는 전체 자료행렬의 공분산행
		를이다.
247	맨 마지막 단계로 군집 (135)와 (24)가 하나로	맨 마지막 단계로 군집 (124)와 (35)가 하나
[5 단계]	병합되어 (12345)를 형성한다.	로 병합되어 (12345)를 형성한다.
253	반면에 (a)에서는 비관론을 펼치는 대한상공회의소와 삼성물산이 <mark>정책옹호</mark> 에 병합되어 있고	반면에 (a)에서는 <mark>정책옹호를</mark> 펼치는 대한상공회의소와 삼성물산이 <mark>정책비</mark> 판과 비관에 병합되어 있고
257 [표 5.3.3]	완전연결법 1, 2, 3, 4, 5 평균연결법 1, 2, 3, 4, 5, 6, 7, 10, 12, 16	완전연결법 1, 2, 3, 4, 6 평균연결법 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16
280 [그림 5.5.2]	[그림 5.5.1] (b) 중복	00 00 00 00 00 00 00 00 00 00 00 00 00
280	실행 결과로부터 30개 지수 중	실행 결과로부터 27개 지수 중
286 [R-코드 5.6.1]	library(NbClust)	삭제 iris-CAmodel.R은 삭제되어 있음
6XL DACT	0	저

6장 DACT	<u> </u>	정

7장 MDS	<u> </u>	정
394	MDS는MDS로 나눌 수 있다(최용	MDS는MDS로 나눌 수 있다(최
334	석, <mark>2004</mark> , 3장;	용석, <mark>2014</mark> , 3장;
204	이런 이유에서 언급하기도 한다	이런 이유에서 언급하기도 한다
394	(최용석, <mark>2004</mark> , 3장;	(최용석, <mark>2014</mark> , 3장;

8장 CRA	<u> </u>	정
	열 범 주	열 범 주
	1 2 p 해합	1 2 … p 행합
	1	1
457 [표 8.2.1]	2 0 ₂₁ 0 ₂₂ 0 _{2p} 0 ₂	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
[並 0.2.1]	후 : : : : : :	÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	$n = o_{n1} o_{n2} o_{np} o_{n}$	$n o_{n1} o_{n2} \cdots o_{np} o_{n.}$
	열합 o _{.1} o _{.2} o _{.p} o	열합 0 _{.1} 0 _{.2} ··· 0 _{.p} 0
465	- Dim 1 : 제1축 좌표점	- Dim. 1 : 제1축 좌표점
	Dim 2 : 제2축 좌표점	Dim. 2 : 제2축 좌표점
	Greenacre와 Hastie(1987)에 따르면	Greenacre와 Hastie(1987)에 따르
	$\mathbf{r}_i = (f_{i1},, f_{ip})^t/f_{i.}$ $i = 1,, n$	면 $\mathbf{r}_i = (f_{i1},, f_{ip})^t / f_{i.}$
	과 이와 유사한 해석을 제1축에 대하여 10대 <mark>피험</mark>	i=1,,n과 이와 유사한 해석을 제1축에 대하여 10대 피
1 /1:/()	허용에 관한	임 허용에 관한
	MCRA algorithm : Burt Matrix	MCRA algorithm : Burt Matrix
	0 - US	8 -
	·	, s
		6 -
ATT	이 기계	00 3386 20 386
475	ă	 -
[그림 8.4.1]	Ş _	16 -
	9 9 9	9 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	?	ू १
	9 -	
	-0.3 -0.2 -0.1 0.0 0.1 0.2 Dim1	-0.3 -0.2 -0.1 0.0 0.1 0.2 Dim1
478		
[그림 8.4.2]	[1] [2] [3] [4] [5] [6] [7] [8] [1,] 0.019 0.012 0.012 0.011 0.008 0 0 0	[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,1] 0.139 0.111 0.111 0.106 0.091 0 0 0
설명력 :	[2,] 30.400 19.500 19.400 17.600 13.100 0 0	[2,] 24.895 19.956 19.906 18.921 16.322 0 0 0
	MCRA algorithm : Burt Matrix	MCRA algorithm : Burt Matrix
	중산	η - 20 20 20 20 20 20 20 20 20 20 20 20 20 2
	~ -	Q _ ^{®8}
		6 -
	6.	9 -
478	и, С _ — — — — — — — — — — — — — — — — — —	9명상 명당
[그림 8.4.2]	중점성 8주 미치함을 착용	00 S주 미차물을 착용 • 마차물을 하
	10 Q	G 388
		0.1- 0.1-
	-1.0 -0.5 0.0 0.5 1.0	-1.0 -0.5 0.0 0.5 1.0 Dim1
	^{□□□1} 범주 정상이 빠져 있음	범주 정상이 추가 됨

478	다중 CRA 그림의 제1축(Dim1)과 제2축(Dim2) 은 각각 30.40%와 19.50%를 설명하며 2차원 의 다중 CRA 그림의 설명력은 총 49.90%이 다.	다중 CRA 그림의 제1축(Dim1)과 제2축(Dim2)은 각각 24.90%와 19.96%를 설명하며 2차원의 다중 CRA 그림의 설명력은 총 44.86%이다.
478, 496 [R-코드 8.4.2]	text(Cb2, rownames(Cb), col=1, pos=3)	text(Cb2, rownames(Cb), col=1, pos=3) abline(v=0, h=0)
479	이 자료에 대한 다중 CRA는 Lebart 외(1984, pp. 100-108)에 잘 소개되 어있다.	이 자료에 대한 다중 CRA는 Lebart 외 2인(1984, pp. 100-108)에 잘 소개되어있다.
480	오른편의 나이가 적은(age1-age3) 젊은 사람은 거주지역규모가 큰 지역(siz3~siz5)에서 살고 있다.	오른편의 나이가 적은(age1-age3) 젊은 사람은 거주지역규모가 큰 지역(siz4, siz5)에서 살고 있다.
480	주식소유는 거주지규모도 큰 지역 (siz3~siz5)에 살고 있다.	주식소유는 거주지규모도 큰 지역(siz4, siz5)에 살고 있다.
480	주거상태 거주지규모도 작은지역(siz1, siz2) 에 살며 교육수준은 낮다(edu1, edu2).	주거상태 거주지규모도 작은지역 (siz1~siz3)에 살며 교육수준은 낮다(edu1, edu2).
482		
[R-코드	rownames(Cb2) < -colnamesr	rownames(Cb2)<-colnames
8.4.3]	2×5×6 삼원분할표인 [자료 1.3.6]은	2×5×6 산원부한표이 [자료 136]
484	[보기 8.4.2]의 $2 \times 2 \times 4$ 삼원분할표 [자료 8.4.2]와 <mark>동일 한</mark> 구조이다.	
489 [R-코드 8.5.1]	##Multiple CA Plot	##Multiple CRA Plot
490 [표 8.5.2]	subject time plsd control problems sevent 15 1 0 3.2222 5.625 1 15 2 0 3.16667 5.375 0 15 3 0 3.27778 3.750 1 18 1 1 2.55556 9.250 0 18 2 0 3.44444 4.375 0 18 3 0 3.33333 2.375 0 19 1 1 2.72222 7.750 1 19 2 1 2.77778 7.500 1 19 3 0 2.77778 7.500 1 19 3 0 3.5556 3.000 0 571 1 0 3.55556 3.000 0 571 2 0 2.94444 1.875 0 571 3 0 3.50000 2.750 0	Subject time ptsd control problems sevent cohes
491, 498 [R-코드 8.5.2]	v1 <- as.numeric(ptsd\$자아통제력 GEQ 3) v2 <- as.numeric(ptsd\$인생문제수 GEQ 3) v3<- as.numeric(ptsd\$스트레스수 GEQ 3) v4 <- as.numeric(ptsd\$가족결속력 GEQ 6)	v1 <- as.numeric(ptsd\$자아통제력>=3) v2 <- as.numeric(ptsd\$인생문제수>=3) v3<- as.numeric(ptsd\$스트레스수>=3) v4 <- as.numeric(ptsd\$가족결속력>=6)
494 [R-코드 8.2.2]	# Simple CRA ca() : Text for Two-Way Table setwd("c:/R과 함께하는 다변량자료분석 /R_code_data")	# Simple CRA ca() : Text for Two-Way Table
500	8.7 (1) 나이와 유방암 <mark>자기</mark> 진단 빈도 와의 연관성을 검정하라.	8.7 (1) 나이와 유방암 자가 진단 빈 도와의 연관성을 검정하라.

9장 Biplot	<u> </u>	정
10장 SA	오	정
10장 SA	<u>Q</u>	정
10장 SA	<u> </u>	정
10장 SA	<u>Q</u>	정