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Abstract
Shape analysis is a method for measuring, describing and comparing the shape of objects in geometric space.

An important aspect is to obtain Procrustes distance based on least square method. We note that the shape is
all the geometrical information that remains when location, scale and rotational effects are filtered out from an
object. However, and unfortunately, when we cannot measure some landmarks which are some biologically or
geometrically meaningful points of any object, it is not possible to measure the variation of all shapes of an
object, including that of the incomplete object. Hence, we need to replace the missing landmarks. In particular,
Albers and Gower (2010) studied the missing rows of configurations in Procrustes analysis. They noted that the
convergence of their approach can be quite slow. In this study, alternatively, we derive an algorithm for estimating
the missing landmarks based on the pre-shapes. The pre-shape is invariant under the location and scaling of the
original configuration with the centroid size of the pre-shape being one. Therefore we expect that we can reduce
the amount of total computing time for obtaining the estimate of the missing landmarks.
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1. Introduction

Statistical shape analysis is an area of study arising from a wide variety of applications, including the
fields of archaeology, biology, chemistry, geography, image analysis and medicine among others. It
is only within the last decade that satisfactory techniques have emerged (Dryden and Mardia, 1993).
In statistical shape analysis, an object can be specified by a geometrical shape obtained from a set
of points referred to as landmarks. Dryden and Mardia (1998) defined that a landmark is a point
of correspondence on each object that matches between and within populations. They also define a
configuration as a set of landmarks on a particular object. The phrase ”shape of an object” is defined as
all the geometrical information that remains when location, scale and rotational effects are filtered out
from the configuration (Kendall, 1984). That means, the shape is invariant under the transformations
of translation, rotation and scaling.

Typical aims of statistical shape analysis include estimating a mean shape, investigating variabil-
ity in shapes, testing differences in mean shapes between two or more groups and describing these
differences. But sometimes configurations can have one or more missing landmarks because of the
partial damage of objects or the loss of data. Therefore we need to replace the missing landmarks.
Moreover, in Procrustes analysis which is the foundation of shape analysis, missing rows of configu-
ration matrices were studied by Commandeur (1991). And Ten Berge et al. (1993) extended this to
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an unpatterned allocation of missing values, but both for the important special case where the trans-
formations are orthogonal. Gower and Dijksterhuis (2004) addressed the problem more generally and
Albers and Gower (2010) introduced an approach useful for handling the missing values of config-
uration matrices in the context of general linear transformations, but they had the problem of slow
convergence in the process of estimating missing landmarks. In this study, we will adapt and modify
their process of shape analysis for estimating shapes of incomplete configurations.

2. Preliminary

In shape analysis, the Procrustes analysis involves matching configurations with transformations of
translating, scaling and rotating to be as close as possible to Euclidean distance using least squares
techniques. The configuration matrix is defined as a k × m matrix of Cartesian coordinates of k-
landmarks in m-dimensions for general m with k > m. Thus, we can consider the case where two
configuration matrices, X1 and X2 are available. For fitting and comparing them, ordinary Procrustes
analysis (OPA) involves the least squares matching of X1 onto X2. Examination of the matching
parameters α, β and Γ is carried out by minimizing the squared Euclidean distance

D2
OPA (X1, X2) =

∥∥∥∥(βX1Γ + 1kα
t
)
− X2

∥∥∥∥2
, (2.1)

where ‖X‖ =
√

tr [XtX] is the Euclidean norm, α is an m × 1 vector, β > 0 is a scale parameter and Γ

is an m × m orthogonal rotation matrix. Without loss of generality we assume that the configuration
matrices X1 and X2 have been centered. Then the OPA solution to the minimization of Equation (2.1)
is given by

α̂ = 0, Γ̂ = VU t, β̂ =
tr

[
Xt

2X1Γ̂
]

tr
[
Xt

1X1

] ,
where Xt

2X1 = ‖X1‖ ‖X2‖UΛV t and both U and V are orthogonal matrices satisfying U tU = V tV = Im

and Λ = diag (λ1, . . . , λm) is a diagonal matrix of singular values λ1 ≥ · · · ≥ λm ≥ 0. Now consider the
general case where n ≥ 2 configuration matrices, X1, . . . , Xn are available. The generalized Procrustes
analysis (GPA) involves translating, scaling and rotating the configurations relative to each other so
as to minimize the total sum of squares. We minimize a quantity proportional to the sum of squared
norms of pairwise differences,

D2
GPA =

1
n
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i< j

∥∥∥∥(βiXiΓi + 1kα
t
i

)
−
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β jX jΓ j + 1kα
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j

)∥∥∥∥2
, (2.2)

where αi (i = 1, . . . , n) is an m × 1 location parameters, βi > 0 is a scale parameter and Γi is an m × m
orthogonal rotation matrix. Clearly, Equation (2.2) is minimized by choosing all βi to be close to zero.
Apart from this trivial solution, Gower(1975) notices a constraint such that

∑n
i=1 ‖βiXi‖

2 =
∑n

i=1 ‖Xi‖
2.

Here, Equation (2.2) may be written alternatively as

D2
GPA =

∥∥∥∥(βiXiΓi + 1kα
t
i

)
− µx

∥∥∥∥2
, (2.3)

where µx = 1/n
∑n

i=1(βiXiΓi + 1kα
t
i) is the average configuration. Thus the optimal solution to the

minimization of Equation (2.3) over µx is given by µ̂x = 1/n
∑n

i=1(β̂iXiΓ̂i + 1kα̂
t
i). To obtain α̂i, β̂i and
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Γ̂i, Gower (1975), Ten Berge (1977) and Kent (1994) have given different definitions and algorithms.
However there is an equivalence among these definitions that yield the same Procrustes mean shape.

Albers and Gower (2010) proposed an algorithm for handling missing values of a configuration
matrix. This is related with the algorithm for estimating the missing landmarks of the configuration
with the transformation of centering, scaling and orthogonal rotating. Furthermore, since Procrustes
methods are based on the least squares technique, the algorithm uses least squares method. Here, we
need to describe the algorithm proposed by Albers and Gower (2010).

Recall the GPA criterion of Equation (2.3) and let µ(h)
x be the average of configurations after the

configurations have been translated, rotated and scaled excluding the hth configuration, such that

µ(h)
x =

1
n − 1

n∑
i,h

(
βiXiΓi + 1kα

t
i

)
.

Then the Procrustes sum of squares of Equation (2.3) is rewritten as

D2
GPA =

n∑
i,h

∥∥∥∥(βiXiΓi + 1kα
t
i

)
− µ(h)

x

∥∥∥∥2
+

n − 1
n

∥∥∥∥(βhXhΓh + 1kα
t
h

)
− µ(h)

x

∥∥∥∥2
. (2.4)

Now, suppose Xk has r (< k) missing landmarks. If the rm missing cells of Xh contain putative values,
then we seek to update them by minimizing the criterion of Equation (2.4). Denote ∆ by an updating
matrix with zeros everywhere except for the cells corresponding to the missing values in Xh and let
Xh − ∆ be the estimated configuration matrix of Xh. If we want to update the hth configuration from
Xh to Xh − ∆, it suffices to consider minimizing over ∆ the term∥∥∥βh (Ik − K) (Xh − ∆) Γh − µ

(h)
x

∥∥∥2
, (2.5)

where Ik is the k × k identity matrix, K = (1/k)1k1t
k. Then we can rewrite Equation (2.6) as∥∥∥∥βh (Ik − K) ∆Γh −
(
βhX̃hΓh − µ

(h)
x

)∥∥∥∥2
, (2.6)

where X̃h = (Ik − K)Xh which is called the centered shape of Xh. Equation (2.6) is itself a Procrustes
problem where now it is ∆, rather than βh and Γh. And let Y = βhX̃h − µ

(h)
x Γt

h to minimize Equation
(2.6), which is equal to minimize,

β2
htr

[
∆t (Ik − K) ∆

]
− 2βhtr

[
∆Y t

]
. (2.7)

Equation (2.7) is to be minimized over ∆, which contains only rm active values, δ = (δ1, . . . , δrm)t. So,
for rm× rm matrix T and rm-vector y, Equation (2.7) is a quadratic form in δ which may be written as

β2
hδ

t (Irm − T ) δ − 2βhδ
ty + constant, (2.8)

where y consists of the rm-values of Y corresponding to the missing value position in ∆ and δ. Thus,
Equation (2.8) is minimal when

δ =
1
βh

(Irm − T )−1 y.
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Normally, ∆ will have some zero rows and it is only necessary to examine the non-zero part. There-
fore, by ordering δ by columns of ∆ it will be found that T becomes block-diagonal with diagonal
blocks of the form (1/k) 1r 1t

r, which correspond to a column with r missing values.
This updating process in Xh will estimate the missing values such that βhX̃hΓh is closest to µ(h)

x .
After this change in Xh, a new generalized Procrustes step is needed to find the optimal transformations
of Xi, i = 1, . . . , n including Xh and to re-estimate µ(h)

x . If we repeat the updating process and the
Procrustes step until the Procrustes sum of squares, Equation (2.3) cannot be reduced further, and we
finally obtain the estimate of the missing values of Xh.

3. Estimation of missing landmarks in shape analysis

We already mentioned that a shape is all the geometrical information that remains when location,
scale and rotational effects are filtered out from the configuration. To remove the location and scale
effects from a configuration matrix X, we can use a pre-shape in shape analysis. Note that the term
pre-shape was first used by Kendall (1984). The pre-shape of a configuration matrix X is given by

Z =
HX
‖HX‖

,

where H, which is called the Helmert sub-matrix, is a (k − 1) × k matrix with orthonormal rows that
satisfies HHt = Ik−1 and HtH = Ik − K. In particular, the lth row of the Helmert sub-matrix H is given
by

(hl, . . . , hl,−lhl, 0, . . . , 0) , hl = − {l (l + 1)}−
1
2 ; l = 1, . . . , k − 1,

where the lth row consists of hl repeated l-times followed by −lhl and then k−l−1 zeros. The trans-
formed HX does not depend on the original location of X and ‖HX‖ = ‖X̃‖ which is the centroid size
of X, so that the pre-shape is invariant under the location and scaling of X. And the pre-shape space
is a hypersphere of unit radius in (k − 1)m real dimensions since ‖Z‖ = 1. Also, in order to remove
the rotational effect from configuration X, we identify all rotated versions of the pre-shape with each
other and this set is the shape of X.

When a configuration is incomplete, we cannot obtain the shape information of the configuration.
Therefore, we need to estimate the missing landmarks of the incomplete configuration. We will adapt
and modify the algorithm of Albers and Gower (2010) to estimate the missing landmarks in statistical
shape analysis. At first, as with the previous section we assume that the cells with unknown values
of Xh contain some putative values that we seek to update by minimizing the GPA criterion. Since
the Euclidean geometry of the configuration space induces spherical geometry in pre-shape space, the
squared Procrustes distance between Xh and µ(h)

x is defined as

d2
P

(
Xh, µ

(h)
x

)
= inf

Γh

∥∥∥ZhΓh − µ
(h)
z

∥∥∥2
, (3.1)

where µ(h)
z = Hµ(h)

x /‖Hµ(h)
x ‖ and Zh = HXh/‖HXh‖ are the pre-shapes of µ(h)

x and Xh, respectively. Note
that, the estimate of the minimizing rotation parameter Γh can be obtained by the OPA matching Zh

onto µ(h)
z .

Now, we want to update the incomplete configuration from Xh to Xh − ∆ using the squared Pro-
crustes distance. Before we estimate the rm missing values of Xh, we should denote the centroid size
of the estimates of Xh as 1/c = ‖H(Xh − ∆)‖. In addition, since the pre-shape space is a hypersphere
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of unit radius, we have a constraint in the following

‖cH (Xh − ∆)‖2 = 1. (3.2)

Here, since HtH = Ik − K is idempotent, Equation (3.2) can be rewritten as

c2
∥∥∥X̃h

∥∥∥ − 2cζ t x + ζ t (Irm − T ) ζ = 1, (3.3)

where ζ = cδ and x is an rm × 1 vector which consists of the rm-values of X̃h corresponding to the
missing value position in ∆ and δ.

Now, to estimate the r missing landmarks of Xh, we can consider minimizing the squared Pro-
crustes distance in Equation (3.1) over ∆ as follows∥∥∥cH (Xh − ∆) Γh − µ

(h)
z

∥∥∥2
, (3.4)

and Equation (3.4) is rewritten as

c2
∥∥∥X̃h

∥∥∥2
− 2cζ t x + ζ t Jζ + 2ζ tw − 2ctr

[
Xt

hµ̃z
(h)

Γt
h

]
+

∥∥∥µ(h)
z

∥∥∥2
, (3.5)

where J = Irm − T and µ̃(h)
z = Htµ(h)

z is the centered pre-shape of µ(h)
x . And w consists of the rm-values

of µ̃(h)
z Γt

h corresponding to the missing value position in ∆ and δ. Next, defining with matrix notations

θ =

(
ζ
c

)
, A =

 J −x

−xt
∥∥∥X̃h

∥∥∥2

 , a =

(
−w

tr
[
Xt

hµ̃
(h)
z Γt

] )
we finally complete the square form of Equation (3.5) such that

θtAθ − 2θta + constant (3.6)

and having a constraint θtAθ = 1 from Equation (3.3). Since A is positive definite, the optimal solution
of Equation (3.6) is given by

θ̂ =

(
ηJ−1x − J−1w

η

)√
1

η2/ν + wt J−1w
, (3.7)

where ν = (‖X̃h‖
2 − xt J−1x)−1 and η = νtr[Xt

h µ̃
(h)
z Γt] − νxt J−1w.

As with the algorithm of Albers and Gower (2010), we additionally need a general Procrustes step
to find the optimal transformations of Xi, i = 1, . . . , n including Xh after the change in Xh. However,
the Procrustes sum of squares in their algorithm converges very slowly due to the scale parameter
βi. Because of the change of the centroid size of Xh in each loop, all of βi may be changed in each
Procrustes step. As a result, there is variation of the Procrustes sum of squares in each loop. Therefore
to investigate variability in all of the shapes, we use the sum of squared Procrustes distances such that

D2
P =

n∑
i=1

‖ZiΓi − µz‖
2 , (3.8)

where µz = Hµx/‖Hµx‖ is the pre-shape of µx. If we repeat the updating process and the Procrustes
step until Equation (3.8) is converged, we finally obtain the estimate of the missing landmarks of Xh.
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Figure 1: Eight landmarks on a gorilla skull (Dryden and Mardia, 1998).

Our proposed updating process needs to compute two parameters, ζ and c for obtaining δ. There-
fore, in each updating process, the required computing time is more than that of Albers and Gower
(2010). However, we use pre-shapes instead of configurations when we investigate variation of shapes.
The pre-shape is invariant under the location and scale of the original configuration and the centroid
size of the pre-shape is one. Thus, Equation (3.8) is less than that of Equation (2.3) in the variation
of the squared Procrustes distances because we only consider the rotation of the pre-shape. Hence,
we can reduce the amount of total computing time in finally obtaining the estimate of the missing
landmarks of Xh. Here, we summarize our Algorithm 1 as follows.

Algorithm 1: algorithm
Step 1 : (Initial Procrustes step) For given configurations, compute µ(h)

x using the GPA algorithm. And set missing
landmarks in Xh to some initial values.
Step 2 : (Updating Process) For current pre-shape Zh and µ(h)

z , estimate Γh by OPA matching Zh onto µ(h)
z , and use Γ̂h

to compute θ =
(
ζt , c

)t in Equation (3.7). Then, calculate the updating values δ = ζ/c for the missing values of Xh
and renew Xh. Repeat this step until Equation (3.5) cannot be reduced further.
Step 3 : (Procrustes step) Recompute the Procrustes fits Xp

i = βiX̃iΓi (i = 1, . . . , n) according to the GPA algorithm,
including Xh. Then, the new µ(h)

x is obtained.
Step 4 : (Repetition) Repeat steps 2 and 3 until the squared Procrustes distances of Equation (3.8) cannot be reduced
further.

4. Examples

4.1. Estimation for the gorilla skulls

Consider the gorilla skulls data described in detail by O’Higgins (1989) and O’Higgins and Dryden
(1993). There are 29 male and 30 female adult gorilla skulls with eight landmarks shown in Figure
1. In this paper, without loss of generality we assume that the configurations have been centered and
scaled.

In the first example, we make each landmark of a configuration as a missing landmark and then
re-estimate it. We performed a total of 8 × 59 = 472 re-estimates. In the process of re-estimating, we
assume that the class of a given incomplete configuration is known. Thus, the GPA is available to find
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(a) (b)

Figure 2: Estimated configurations by (a) Algorithm I and (b) Algorithm II.

the estimate of the mean shape for each class excluding the incomplete configuration. In this way, we
try to compare the performance of our proposed algorithm with that of Albers and Gower (2010). The
evaluation of an estimate of each configuration is measured as the square root of the residual sum of
squares (SQRSS) which is Euclidean norm of the difference between raw configuration Xraw and the
estimate of incomplete configuration X̂mis such that

SQRSS =
∥∥∥Xraw − X̂mis

∥∥∥ . (4.1)

For the convenience of notation, let us denote the algorithms as follows :

• Algorithm I : The algorithm of Albers and Gower (2010).

• Algorithm II : The proposed algorithm given by Algorithm 1.

Figure 2 shows the estimated configuration of the landmark 8 of a male gorilla skull. It is not
easy to identify the difference between estimated configurations. Actually, the estimates of the two
algorithms are almost completely matched and the SQRSS is calculated as 0.0219 in both cases. Table
1 gives the averages of the SQRSS (MSQRSS) for the cases of estimating each landmark for female
and male gorilla skulls. We can also confirm that the MSQRSS of the two algorithms are equivalent,
but convergence time is different. The ratio of the elapsed time for estimating the missing landmark
using two algorithms is calculated as 36.26. In other words, our algorithm could estimate the missing
landmark about 36.3 times faster than that of Albers and Gower (2010). Table 2 gives the averages of
the ratio of the elapsed time for estimating each landmark. We can also confirm that the elapsed time
of Algorithm II is extremely shorter than that of Algorithm I.

In the second example, for the randomly selected two of eight landmarks, we make them as miss-
ing landmarks and then we re-estimate them. Then, we performed a total of 8C2 × 59 = 1,652
re-estimates. Table 3 gives the MSQRSS for the cases of estimating each pair of landmarks for female
and male gorilla skulls. In the table, the MSQRSS is presented for only one case because the estimates
of Algorithm I and II are almost completely equivalent.
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Table 1: The MSQRSS of Algorithm I and II for gorilla skulls with one deleted landmark

Deleted
landmark

Female Male
Algorithm I Algorithm II Algorithm I Algorithm II

1 0.0219 0.0219 0.0245 0.0245
2 0.0233 0.0233 0.0280 0.0280
3 0.0190 0.0190 0.0197 0.0197
4 0.0189 0.0189 0.0173 0.0173
5 0.0146 0.0146 0.0170 0.0170
6 0.0126 0.0126 0.0163 0.0163
7 0.0162 0.0162 0.0210 0.0210
8 0.0226 0.0226 0.0253 0.0253

Table 2: The average ratio of the elapsed time of Algorithm I and II for gorilla skulls with one deleted landmark

Deleted landmark
1 2 3 4 5 6 7 8

Female 46.46 45.04 44.71 45.97 40.58 44.91 41.48 46.50
Male 44.74 46.40 44.35 44.01 42.15 44.84 41.81 44.16

Table 3: The MSQRSS of Algorithm I and II for gorilla skulls with two deleted landmarks

Deleted
landmarks Female Male

Deleted
landmarks Female Male

1, 2 0.0318 0.0378 3, 5 0.0252 0.0286
1, 3 0.0295 0.0315 3, 6 0.0235 0.0263
1, 4 0.0287 0.0292 3, 7 0.0265 0.0306
1, 5 0.0272 0.0290 3, 8 0.0283 0.0334
1, 6 0.0406 0.0517 4, 5 0.0261 0.0270
1, 7 0.0283 0.0323 4, 6 0.0235 0.0242
1, 8 0.0321 0.0364 4, 7 0.0266 0.0284
2, 3 0.0337 0.0396 4, 8 0.0304 0.0317
2, 4 0.0288 0.0342 5, 6 0.0208 0.0241
2, 5 0.0282 0.0338 5, 7 0.0240 0.0307
2, 6 0.0274 0.0329 5, 8 0.0285 0.0325
2, 7 0.0305 0.0371 6, 7 0.0206 0.0257
2, 8 0.0404 0.0422 6, 8 0.0264 0.0308
3, 4 0.0352 0.0329 7, 8 0.0310 0.0379

The overall values of the MSQRSS increased more than the values in Table 1. In particular, when
a configuration is missing on landmark 1 and 6, the MSQRSS is maximum for both female and male.
Figure 3 shows an example of these cases. The configuration in Figure 3 is a estimated male gorilla
skull and the SQRSS of the configuration is calculated as 0.0581. The estimates of these landmarks
have a large bias because two missing landmarks are adjacent and especially landmark 1 is the extreme
curvature on the edge of the configuration.

Table 4 shows the average ratio of the elapsed time for estimating each pair of landmarks. From
this table, the elapsed time of Algorithm II is more than 45 times faster than Algorithm I. It can be
confirmed again that the elapsed time of our algorithm is extremely shorter than that of Albers and
Gower (2010).

4.2. Estimation for the three-dimensional configurations of macaque skulls

Consider the macaque skulls data described in Dryden and Mardia (1993) obtained the random sam-
ples of 9 male and 9 female skulls. There exists a total of 26 landmarks for each skull, and 7 landmarks
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Table 4: The average ratio of the elapsed time of Algorithm I and II for gorilla skulls with two deleted landmarks

Deleted
landmarks Female Male

Deleted
landmarks Female Male

1, 2 48.94 45.87 3, 5 45.42 45.82
1, 3 48.38 43.54 3, 6 46.87 46.89
1, 4 45.78 46.05 3, 7 44.30 42.57
1, 5 46.87 44.84 3, 8 44.40 43.16
1, 6 47.82 47.22 4, 5 46.08 45.68
1, 7 47.27 43.85 4, 6 46.78 44.55
1, 8 45.98 44.52 4, 7 43.41 43.53
2, 3 47.84 46.65 4, 8 43.41 42.74
2, 4 44.88 46.31 5, 6 47.52 43.78
2, 5 43.33 46.30 5, 7 42.51 42.62
2, 6 46.41 47.06 5, 8 44.77 40.58
2, 7 46.27 45.11 6, 7 44.34 46.47
2, 8 46.87 46.83 6, 8 45.14 46.61
3, 4 48.56 47.47 7, 8 45.93 46.83

Figure 3: Estimate of landmarks 1 and 6 of a male gorilla skull.

in Figure 4 are taken 67 for analysis. The seven chosen landmarks are prosthion (1), opisthion (2),
bregma (3), nasion (4), asterion (5), midpoint of temp suture (6) and interfrontomalare (7).

For each skull, we randomly select one of 7 landmarks as a missing landmark and then estimate
the missing landmark for each skull. Thus, we estimate a total 7×18 = 126 incomplete configurations.
Table 5 gives the values of the MSQRSS for each landmark. We can identify that the results, according
to the two algorithms, are quite similar in Table 5. From this table, we can see that most values of
MSQRSS are less than 0.05 except for landmark 1 and landmark 3 of males. This means that the
estimations of the three-dimensional data are made well.
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(a) (b)

(c)

Figure 4: Seven landmarks on a three-dimensional macaque skull:
(a) side view, (b) frontal view and (c) bottom view.

Table 6 shows the averages of the ratio of the elapsed time for estimating each landmark. From
this table we can confirm that the elapsed time of Algorithm II is shorter than that of Algorithm I. The
algorithm of Albers and Gower (2010) requires about 190 re-estimates, but about 13 re-estimates are
enough.

5. Conclusion

Sometimes, configurations can have one or more missing landmarks, so we need to estimate them.
But in statistical shape analysis, typical statistical methods such as expectation-maximization (EM)
algorithm or Markov Chain Monte Carlo (MCMC) cannot be used because the data structure in shape
analysis is the array form and the shape space is generally considered as a sphere. In Procrustes
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Table 5: The MSQRSS of Algorithm I and II for macaque skulls

Delete
landmark

Female Male
Algorithm I Algorithm II Algorithm I Algorithm II

1 0.0488 0.0488 0.0585 0.0586
2 0.0326 0.0326 0.0426 0.0426
3 0.0302 0.0302 0.0694 0.0694
4 0.0324 0.0624 0.0388 0.0388
5 0.0342 0.0342 0.0380 0.0380
6 0.0257 0.0257 0.0289 0.0289
7 0.0331 0.0331 0.0400 0.0400

Table 6: The average ratio of the elapsed time of Algorithm I and II for macaque skulls

Deleted landmark
1 2 3 4 5 6 7

Female 16.79 18.37 17.18 17.28 18.75 16.57 16.16
Male 15.59 16.35 16.69 16.10 16.91 17.73 16.80

analysis which is the basis of shape analysis, an algorithm, which can handle missing landmarks is
proposed by Albers and Gower (2010). Since GPA algorithm is based on the least square criterion,
their algorithm is based on the least square methods. Furthermore, their algorithm can be viewed
as the same as a variant of the iterative EM algorithm where M-step, rather than representing a step
for maximum likelihood estimation, now stands for the least-square Procrustes problem, while E-step
gives expected values for the missing cells. However, their algorithm has the disadvantage of slow
convergence to account for the direct transformation of configurations.

In fact, many missing data assignment methods are available in the statistical shape analysis for
missing data estimation. It is well known that among mean substitution based on conditional distri-
butions, EM algorithm and multiple regression assignment methods are among the most used missing
data assignment methods. Apart from these methods, approaches to estimate missing data by modi-
fying PCA have also been proposed (Nounou et al., 2002; Scholz et al., 2005; Stacklies et al., 2007).

In statistical shape analysis, it is possible to use the geometrical information called shape. The
shape is information that remains when location, scale and rotational effects are filtered out from a
configuration. Shape can also be measured dissimilarity between or among objects by using Pro-
crustes distance. In this study, we propose a modified algorithm to improve the slow convergence
problem. The process of our algorithm is similar to that of Albers and Gower (2010), but we use the
shape information for estimating missing landmarks and then measure the shape variability using the
sum of squared Procrustes distances. Since it is sufficient to consider only the rotation of the shape in
pre-shape space, there is an advantage in convergence speed that is faster than using configuration and
the Procrustes sum of squares. Actually, the rate of convergence of our algorithm is definitely shorter
than that of Albers and Gower (2010) as seen in our examples.
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