Multivariate Statistics (I)

3. Factor Analysis (FA)

Contents

- 3.1 Comprehension of FA
- 3.2 Concept of common factor
- 3.3 Factor model
- 3.4 Estimation of factor model
- 3.5 Factor rotation and factor loadings plot
- 3.6 Application of factor scores
- 3.7 Visualizations of FA
- 3.8 R for FA: Practice Time

3.1 Comprehension of FA

Definition

FA: technique for describing the covariance relationship among many variables in terms of a few *factors* which are underlying, but unobservable random quantities.

History:

- **K. Pearson and Charles Spearman provided beginnings of FA in the early 20th century.**
- Charles Spearman is known for being the one who coined the term factor analysis and actually used it to measure children's cognitive performance.
- > Spearman, C. (1904). General intelligence objectively determined and measured, *American Journal of Psychology*, 15, 201–293.

Charles Spearman

From Wikipedia, the free encyclopedia

Charles Edward Spearman, FRS (10 September 1863 - 17 September 1945) was an English psychologist known for work in statistics, as a pioneer of factor analysis, and for Spearman's rank correlation coefficient. He also did seminal work on models for human intelligence, including his theory that disparate cognitive test scores reflect a single general factor and coining the term g factor.

3.1 Introduction of FA - Process Steps for FA

- [STEP 1] Prepare a multivariate data matrix X.
- [STEP 2] Obtain a covariance matrix S (or a correlation matrix R).
- [STEP 3] PCFA is performed to obtain the first $m(\leq p)$ common factors of 70% or more of the goodness-of-fit, and the common factors are can be interpreted after the orthogonal transformation.
- [STEP 4] MLFA is performed and the common factors are obtained through the test
 and the common factors are interpreted after the orthogonal transformation.
- [STEP 5] Compare the tendency of the common factors and the factor scores obtained from [STEP3] and [STEP 4].
- [STEP 6] Repeat [Step 3] [Step 5] while changing the number of common factors.
- [STEP 7] Consider factor scores as a new multivariate data reducing dimensionally.

3.2 Concept of common factor

igoplus Spearman's study of 1904 : n = 33 children of private elementary school

Classic French English Mathematics Discrimination of pitch Music

		고전	프랑스어	영어	수학	음감	음악
	고 전	1.00					
	프랑스어	0.83	1.00				
R =	영 어	0.78	0.67	1.00			
	수 학	0.70	0.67	0.64	1.00		
	음 감	0.66	0.65	0.54	0.45	1.00	
	음 악	0.63	0.57	0.51	0.51	0.40	1.00

Factor loadings

General ability(intelligence) factor

$$x_j = \lambda_j f + e_j, j = 1,...,6.$$

Specific factor

$$\lambda_1 = -0.94, \ \lambda_2 = -0.89, \ \lambda_3 = -0.84, \ \lambda_4 = -0.80, \ \lambda_5 = -0.74, \ \lambda_6 = -0.72,$$

3.3 Factor model

Vector of specific factors

Model with m common factors

$$\boldsymbol{x} = (x_1, ..., x_p)^t \sim (\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma} > 0$$

$$x_j - \mu_j = \lambda_{j1} f_1 + \cdots + \lambda_{jm} f_m + e_j, \quad j = 1, \dots, p$$
 $\boldsymbol{x} - \boldsymbol{\mu} = \Lambda \boldsymbol{f} + \boldsymbol{e}$

Assumptions

$$f$$
 and ϵ : independent \Leftrightarrow $Cov(\epsilon, f) = E(\epsilon f') = 0$

Matrix of factor loadings

$$E(f) = 0$$
, $Cov(f) = E(ff') = I$

$$E(\mathbf{f}) = \mathbf{0}, \operatorname{Cov}(\boldsymbol{\epsilon}) = E(\boldsymbol{\epsilon}\boldsymbol{\epsilon}') = \Psi = \operatorname{diag}(\psi_1, ..., \psi_p)$$

Properties: Covariance Structure

1) $\Sigma = \Lambda \Lambda^t + \Psi$: Common factors decomposition

$$- var(x_j) = \sigma_{jj} = \lambda_{j1}^2 + \cdots + \lambda_{jm}^2 + \psi_j = h_j^2 + \psi_j$$

$$- cov(x_j, x_k) = \sigma_{jk} = \lambda_{j1}\lambda_{k1} + \cdots + \lambda_{jm}\lambda_{km}$$

$$-h_j^2 = \lambda_{j1}^2 + \cdots + \lambda_{jm}^2 = \sum_{k=1}^m \lambda_{jk}^2 : jth \text{ communality}$$

(sum of squared loading of the x_i)

2)
$$Cov(\boldsymbol{x}, \boldsymbol{f}) = \Lambda$$

 $-cov(x_j, f_k) = \lambda_{jk}$: loadings of the *jth* variable x_j on the kth factor)

[Table 3.4.1] PCFA of S based on the PC method

- [step 1] Data matrix: $X = [x_1, ..., x_n]^t$, $x_i = (x_{i1}, ..., x_{iv})^t$, i = 1, ..., n.
- [step 2] Centred data matrix: Y = HX, $H = I n^{-1}1_n 1_n^t$.
- [step 3] Spectral decomposition:

$$Y^t Y/(n-1) = S = VDV^t = \sum_{k=1}^p l_k \mathbf{v}_k \mathbf{v}_k^t$$

- $V = (\boldsymbol{v}_1,, \boldsymbol{v}_p)$: Orthogonal matrix satisfying $V^t V = VV^t = I$
- $D = diag(l_1,...,l_p)$: A matrix of eigenvalues satisfying $l_1 \ge \cdots \ge l_p > 0$
- [step 4] Proportion of total sample variance due to *j*th factor : $\frac{t_k}{\sum_{s_{jj}}} \times 100, \ k = 1, ..., m$

$$\frac{l_k}{\sum_{j=1}^{p} s_{jj}} \times 100, \ k = 1, ..., \ m$$

- [step 5] Estimation of factor loading matrix: $\hat{\Lambda} = \hat{\Lambda}_v = \begin{bmatrix} \sqrt{l_1} \, \boldsymbol{v}_1, ..., \sqrt{l_m} \, \boldsymbol{v}_m \end{bmatrix}, m < p$.
- [step 6] Estimation of specific variance:

$$\hat{\Psi} = \hat{\Psi}_{y} = diag(\hat{\psi}_{y_{1}}, ..., \hat{\psi}_{y_{p}}), \hat{\psi}_{y_{j}} = s_{jj} - \sum_{k=1}^{m} \hat{\lambda}_{y_{jk}}^{2}$$

[step 7] Residual matrix: $R_e = S - (\widehat{\Lambda}_u \widehat{\Lambda}_u^t + \widehat{\Psi}_u)$

- How do we select the number of factors m in PCM?
 - ✓ Set m equal to the number of eigenvalues of R greater than 1 or the number of positive eigenvalues of S (Rule of thumb= Kaiser(1960)'s rule)
 - ✓ Percentage of variation accounted for by the first m eigenvalues are more than equal to about 70%, i.e.

1)
$$\frac{\sum_{k=1}^{m} l_k}{\sum_{j=1}^{p} s_{jj}} \times 100 \ge 70\% \text{ for S}$$
 2) $\frac{\sum_{k=1}^{m} l_k}{p} \times 100 \ge 70\% \text{ for R}$

 $\text{Residual matrix:} \quad R_e = S - (\widehat{\Lambda}_y \widehat{\Lambda}_y^t + \widehat{\Psi}_y) \text{ vs. } R_e = R - (\widehat{\Lambda}_z \widehat{\Lambda}_z^t + \widehat{\Psi}_z)$

The diagonal elements are zero and the other elements are small: m factors model is appropriate!

[Example 3.4.1] PCFA of KLPGA Data (klpgaa.txt)

- [STEP 1] Prepare a multivariate data matrix X form [Data 1.3.2]
- [STEP 2] Obtain a covariance matrix S (or a correlation matrix R).

		평균퍼팅수	그린적중률	파세이브율	파브레이크율	평균타수	상금률
	평균퍼팅수	1.000	0.128	-0.376	-0.440	0.444	-0.407
	그린적중률	0.128	1.000	0.759	0.731	-0.800	0.641
R =	파세이브율	-0.376	0.759	1.000	0.717	-0.937	0.736
	파브레이크율	-0.440	0.731	0.717	1.000	-0.897	0.829
	평균타수	0.444	-0.800	-0.937	-0.897	1.000	-0.829
	상금 률	0.407	0.641	0.736	0.829	-0.829	1.000

[STEP 3] Spectral decomposition

-
$$R = VDV^{t}$$
: $V = (\mathbf{v}_{1}, ..., \mathbf{v}_{p}), D = diag(l_{1}, ..., l_{p}), l_{1} \ge ... \ge l_{p} > 0.$

Eigenvector: $V = (v_1, v_2, v_3, v_4, v_5, v_6)$ eigenvalue: $(l_1, ..., l_6) = (4.31, 1.12, 0.33, 0.20, 0.03, 0.01)$

v_1	v_2	v_3	v_4	$v_{\rm s}$	v_6
-0.21	0.84	-0.14	-0.16	0.45	0.04
0.39	0.53	0.06	0.23	-0.71	-0.06
0.44	0.04	0.66	-0.27	0.27	-0.47
0.45	-0.05	-0.47	0.56	0.38	-0.35
-0.48	0.00	-0.20	-0.12	-0.25	-0.81
0.43	-0.07	-0.53	-0.72	-0.09	0.01

Putting average
Green in regulation %
Par save %
Par break %
Scoring average
Prize rate

[STEP 4] Proportion of total sample variance according to the

Scree Graph

number of factors

$$l_1 = 4.31$$
 , $l_2 = 1.12$
$$\frac{4.31 + 1.12}{6} \times 100 = 90.48\%$$

m = 2

[STEP 5] Estimation of factor loading matrix

$$\hat{\boldsymbol{\Lambda}} = \hat{\boldsymbol{\Lambda}}_z = ~ \left[\sqrt{l_1} \, \boldsymbol{v}_1, ..., \sqrt{l_m} \, \boldsymbol{v}_m \, \right], ~ m < p.$$

$$- \hat{\boldsymbol{\Lambda}} = \hat{\boldsymbol{\Lambda}}_z = \left[\sqrt{l_1} \, \boldsymbol{v}_1, \sqrt{l_2} \, \boldsymbol{v}_2 \, \right] = \left[\sqrt{4.31} \, \boldsymbol{v}_1, \sqrt{1.12} \, \boldsymbol{v}_2 \, \right]$$

[STEP 6] Estimation of specific variance

$$\hat{\Psi} = \hat{\Psi}_z = diag(\hat{\psi}_{z_1}, ..., \hat{\psi}_{z_p}), \ \hat{\psi}_{z_j} = 1 - \sum_{k=1}^m \hat{\lambda}_{z_{jk}}^2$$

• [STEP 7] Residual matrix $R_e = R - (\widehat{\Lambda_z} \widehat{\Lambda}_z^t + \widehat{\Psi}_z)$

		평균퍼팅수	그린적중률	파세이브율	파브레이크율	평균타수	상금률
R =	평균퍼팅수	0.000	-0.017	-0.015	0.014	0.010	0.048
	그린적중률	-0.017	0.000	-0.004	0.004	0.007	-0.040
	파세이브율	-0.015	-0.004	0.000	-0.134	-0.027	-0.076
	파브레이크율	0.014	0.004	-0.134	0.000	0.034	-0.009
	평균타수	0.010	0.007	-0.027	0.034	0.000	0.061
	상금률	0.048	-0.040	-0.076	-0.009	0.061	0.000

Results	of PCFA		Factor lo	adings	Communalities	Specific variances		
	varia	bles	$\lambda_{jk} = f_1$	$rac{\sqrt{l_k} v_{jk}}{f_2}$	$h_j^2 = \lambda_{j1}^2 + \lambda_{j2}^2$	$\psi_j = 1 - h_j^2$		
	Putting averag	re	-0.436	0.888	0.979	0.021		
	Green in regu		0.810	0.561	0.970	0.030		
	Par save %		0.913	0.042	0.836	0.164		
	Par break %		0.934	-0.053	0.876	0.124		
	Scoring averag	ge	-0.997	0.000	0.993	0.007		
	Prize rate		0.893	-0.074	0.802	0.198		
	eigenvalue		4.31	1.12				
	contribution	rate	71.83	18.65	total contribution ra	te = 90.48%		

MLFA based on the Maximum Likelihood Method

$$f(x) = \frac{1}{(\sqrt{2\pi})^p |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu)\right\}$$

[step 1] Given $x=(x_1,...,x_p)^t\sim N_p(\pmb{\mu},\varSigma)$, $\varSigma>0$, consider the likelihood function

$$\begin{split} l(\pmb{\mu},\ \ \varSigma) &= \log L(\pmb{\mu},\ \ \varSigma) = \ -\frac{n}{2} \log |2\pi\varSigma| - \frac{1}{2} \sum_{i=1}^n (\pmb{x}_i - \pmb{\mu}\)^t \varSigma^{-1} \left(\pmb{x}_i - \pmb{\mu}\ \right) \\ &= -\frac{n}{2} log |2\pi\varSigma| - \frac{n}{2} tr(\varSigma^{-1}S_n) - \frac{n}{2} (\overline{\pmb{x}} - \pmb{\mu})^t \varSigma^{-1} \left(\overline{\pmb{x}} - \pmb{\mu}\right) \end{split}$$

[step 2]
$$\hat{\mu} = \overline{x}$$
: $\Sigma = \Lambda \Lambda^t + \Psi \longrightarrow \rho = D_{\sigma}^{-1/2} \Sigma D_{\sigma}^{-1/2}$

$$l(\hat{\boldsymbol{\mu}}, \boldsymbol{\Lambda}, \boldsymbol{\Psi}) = -\frac{n}{2} \left[\log |2\pi (\boldsymbol{\Lambda} \boldsymbol{\Lambda}^t + \boldsymbol{\Psi})| + tr((\boldsymbol{\Lambda} \boldsymbol{\Lambda}^t + \boldsymbol{\Psi})^{-1} S_n) \right]$$

$$\begin{array}{c|c} \text{[step 3]} & (\hat{\psi}^{-1/2} S_n \, \hat{\psi}^{-1/2}) \, \hat{\psi}^{-1/2} \hat{\Lambda} \, = \, \hat{\psi}^{-1/2} \hat{\Lambda} \, (I + \, \hat{\Lambda}^t \hat{\psi}^{-1} \hat{\Lambda}) \\ \hline Max \, l \\ \hat{\Lambda}, \Psi & \hat{\Psi} = \, diag \, (S_n \, - \, \hat{\Lambda} \hat{\Lambda}^t) \\ & \hat{\Lambda}^t \hat{\psi}^{-1} \hat{\Lambda} \, : \, diagonal \; matrix \\ \end{array} \qquad \begin{array}{c} \hat{\Lambda} = \hat{\Lambda}_y \\ \hline \hat{\psi}_z = D_{\hat{\sigma}}^{-1/2} \hat{\Lambda}_y \\ \hline \hat{\psi}_z = D_{\hat{\sigma}}^{-1} \hat{\psi}_y \\ \hline \end{array}$$

How do we select the number of factors m in MLM?

$$\checkmark$$
 Goodness-of fit: $\frac{\sum\limits_{k=1}^{m}l_{k}}{\sum\limits_{j=1}^{p}s_{jj}} \times 100 \text{ for S}$ $\frac{\sum\limits_{k=1}^{m}l_{k}}{p} \times 100 \text{ for R}$

✓ Test the hypotheses $H_0: \Sigma = \Lambda \Lambda^t + \Psi$ with an appropriate m vs. $H_1: \Sigma \neq \Lambda \Lambda^t + \Psi$

$$\left(n - \frac{2p + 4m + 11}{6}\right) \ln\left(\frac{|\hat{\Lambda}\hat{\Lambda}^t + \hat{\Psi}|}{|(n-1)S/n|}\right) \simeq \chi^2_{([(p-m)^2 - p - m]/2)}$$

: Bartlett's test statistic based on the chi-square approximation when n \wedge n-p are large

 \checkmark Likelihood Ratio Test : $-2 \log \Lambda \sim \chi_{df}^2$

$$\hat{R}_e = S - (\hat{\Lambda}_y \hat{\Lambda}_y^t + \hat{\Psi}_y) \longrightarrow \hat{R}_e = R - (\hat{\Lambda}_z \hat{\Lambda}_z^t + \hat{\Psi}_z)$$

The diagonal elements are zero and the other elements are small: *m* factor model is appropriate!

❖ [Example 3.4.3] MLFA of KLPGA

	Co	mparis	on of MLFA and	PCFA					
		N	I LFA	PCFA					
variable	$\hat{\lambda}_{zjk}$		$\hat{\psi}_{zj} = 1 - \hat{h}_{zj}^2$	$\lambda_{jk} = 1$	$\sqrt{l_k}v_{jk}$	$\psi_j = 1 - h_j^2$			
variable	f_1	f_2	$\psi_{zj} - 1 - n_{zj}$	f_1	f_2	$\psi_j - 1 n_j$			
Putting average	-0.811	0.581	0.005	-0.436	0.888	0.021			
Green in regulation %	0.455	0.855	0.062	0.810	0.561	0.030			
Par save %	0.805	0.476	0.124	0.913	0.042	0.164			
Par break %	0.814	0.382	0.191	0.934	-0.053	0.124			
Scoring average	-0.882	-0.467	0.005	-0.997	0.000	0.007			
Prize rate	0.754	0.352	0.307	0.893	-0.074	0.198			
Contribution rate	58.70	29.70	total contribution rate = 88.40%	71.83	18.65	total contribution rate = 90.48%			

		평균퍼팅수	그린적중률	파세이브율	파브레이크율	평균타수	상금률		
·	평균퍼팅수	0.000	0.000	0.001	-0.001	0.000	0.000		
_	그린적중률	0.000	0.000	-0.015	0.034	0.000	-0.003		Residual matrix
$R_e =$	파세이브율	0.001	-0.015	0.000	-0.121	-0.005	-0.039	\leftrightarrow	of PCFA
	파브레이크율	-0.001	0.034	-0.121	0.000	-0.001	0.080		
	평균타수	0.000	0.000	-0.005	-0.001	0.000	0.000		
	상금률	0.000	-0.003	-0.039	0.080	0.000	0.000		
									1 /

3.5 Factor rotation and factor loadings plot

Definition

• An orthogonal transformation of the factor loadings : $T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} T = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Concepts

• $\hat{\Lambda}$ the p x m matrix of estimated factor loadings obtained by PCFA or MLFA

$$\hat{\Lambda}^* = \hat{\Lambda} T$$
: matrix of rotated loadings where $TT^t = T^t T = I$

=> The estimated factor common decomposition remains unchanged:

Conclusion

$$\Sigma \doteq \hat{\Lambda} \hat{\Lambda}^t + \hat{\Psi} = \hat{\Lambda} (TT^t) \hat{\Lambda}^t + \hat{\Psi} = \hat{\Lambda}^* \hat{\Lambda}^{*t} + \hat{\Psi}$$

From a mathematical viewpoint, it is immaterial whether $\hat{\Lambda}$ or $\hat{\Lambda}^* = \hat{\Lambda} T$ is obtained.

Since the original loadings may not be readily interpretable, it is usual practice to rotate them until a simple structure is achieved.

Question: How can you choose an orthogonal matrix T? Varimax

3.5 Factor rotation and factor loadings plot

[Example 3.5.1] Comparison of before and after the rotation in MLFA

	Before rotation	After rotation
variable	\widehat{A}_z	$\widehat{\Lambda_z}^*$
variable	$f_1 \qquad f_2$	$f_1 \qquad f_2$
Putting average	-0.811 0.581	-0.168 0.983
Green in regulation %	0.455 0.855	0.925 0.288
Par save %	0.805 0.476	0.908 -0.228
Par break %	0.814 0.382	0.848 -0.301
Scoring average	- <u>0.882</u> -0.467	-0.955 0.288
Prize rate	0.754 0.352	0.784 -0.280

(a) before rotation

Counterclockwise

(b) after rotation

Sum of the weighted squares of the errors

$$\min_{\boldsymbol{f}_i} e_i^{\ t} \Psi^{-1} e_i = (\boldsymbol{x}_i - \boldsymbol{\mu} - \boldsymbol{\Lambda} \boldsymbol{f}_i)^t \Psi^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu} - \boldsymbol{\Lambda} \boldsymbol{f}_i)$$

Estimations of Factor Score

- MLFA-WLSM: $\hat{\boldsymbol{f}}_i^{ls} = (\hat{\Lambda}^t \hat{\boldsymbol{\psi}}^{-1} \hat{\Lambda})^{-1} \hat{\Lambda}^t \hat{\boldsymbol{\psi}}^{-1} (\boldsymbol{x}_i \overline{\boldsymbol{x}}), i = 1, ..., n$
- MLFA-REGM: $\hat{f}_i^{re} = \hat{\Lambda}^t S^{-1}(x_i \overline{x}), i = 1, ..., n$

$$\hat{f}_{i}^{re} = \hat{\Lambda}_{z}^{t} R^{-1} z_{i}, i = 1, ..., n$$

• PCFA-LSM: $\hat{\boldsymbol{f}}_{i}^{\ pc} = (\hat{\boldsymbol{\Lambda}}^{t} \ \hat{\boldsymbol{\Lambda}} \)^{-1} \ \hat{\boldsymbol{\Lambda}}^{t} \left(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}} \ \right), \ i = 1, \ ..., \ n$

$$f \sim N_m (\mathbf{0}, I)$$

$$x - \mu \sim N_p (\mathbf{0}, \Sigma)$$

$$f | \mathbf{x} \sim N_m (\Lambda^t \Sigma^{-1} (\mathbf{x} - \mu), I_m - \Lambda^t \Sigma^{-1} \Lambda) \longrightarrow E(f | \mathbf{x}) = \Lambda^t \Sigma^{-1} (\mathbf{x} - \mu)$$

R: Factor Scores

- **❖** [Example 3.6.1] PCFA and MLFA of air-pollution data [Data 2.8.2] in LA
- **❖** Comparison of varimax rotations of PCFA and MLFA: [R-code 3.6.1]

			PCFA				MLFA	
variable	f_1	f_2	f_3	Specific distribution	f_1	f_2	f_3	Specific distribution
Wind	-0.059	-0.172	0.839	0.263	0.000	-0.210	-0.334	0.840
Solar	0.040	0.736	-0.017	0.456	0.000	0.318	0.000	0.891
CO	0.718	0.278	-0.364	0.275	0.487	0.318	0.507	0.405
NO	0.665	-0.380	-0.456	0.205	0.238	-0.269	0.931	0.005
NO2	0.810	0.156	0.034	0.319	0.989	0.000	0.000	0.005
O3	0.167	0.820	-0.148	0.278	0.000	0.987	0.124	0.005
HC	0.687	0.076	0.495	0.278	0.427	0.103	0.172	0.778
Contribution rate	33.38	19.80	17.20	total contribution rate : 70.38%	30.00	21.00	19.00	total contribution rate : 70%

Vehicle exhaust gas factor

Residual Matrices of PCFA and MLFA:

d			
Z	2	١	
L	ι	ϵ	

				PCFA			MLFA							
	Wind	Solar	СО	NO	NO2	О3	нс	Wind	Solar	СО	NO	NO2	О3	НС
Wind	0.000	0.042	0.202	0.087	-0.064	0.021	-0.205	0.000	-0.032	0.072	-0.001	-0.001	-0.001	0.261
Solar	0.042	0.000	-0.056	0.172	-0.031	-0.294	-0.023	-0.032	0.000	0.043	-0.001	0.000	0.000	-0.018
CO	0.202	-0.056	0.000	-0.036	-0.056	0.010	-0.168	0.072	0.043	0.000	0.000	0.001	0.000	-0.162
NO	0.087	0.172	-0.036	0.000	-0.166	0.000	0.033	-0.001	-0.001	0.000	0.000	0.000	0.000	0.002
NO2	-0.064	-0.031	-0.056	-0.166	0.000	-0.092	-0.137	-0.001	0.000	0.001	0.000	0.000	0.000	0.001
O3	0.021	-0.294	0.010	0.000	-0.092	0.000	0.050	-0.001	0.000	0.000	0.000	0.000	0.000	0.001
HC	-0.205	-0.023	-0.168	0.033	-0.137	0.050	0.000	0.261	-0.018	-0.162	0.002	0.001	0.001	610000

[Figure 3.6.2] PCFA's factor scores

42 days LA air pollution

42 measurements on air-pollution variables recorded at 12:00 noon in the LA area on different days.

		X	7:	Law					Z. Standardized					<i>F</i> :	F: Factor scores		
	Wind	Solar	со	NO	NO2	О3	НС	Wind	Solar	со	NO	NO2	О3	HC	f_1	f_2	f_3
1 2 3 4 5 6 7 8 9	8 7 7 10 6 8 9 5 7 8	98 107 103 88 91 90 84 72 82 64	7 4 4 5 4 5 7 6 5 5	2 3 3 2 2 2 4 4 1 2	12 9 5 8 12 12 21 11 13	8 5 6 15 10 12 15 14 11 9	2 3 4 3 4 5 4 3 4	-0.316	1.912 1.681 0.816 0.989 0.931 0.585 -0.107	-0.444 -0.444 0.367 -0.444 0.367 1.988 1.177 0.367	0.744 0.744 -0.175	-0.311 -1.497 -0.607 -0.607 0.579 0.579 3.249 0.283	-0.612 1.005 0.107 0.466 1.005 0.826	-0.138	0.116 -0.175 -0.629 0.367 -0.587 0.749 2.429 2.558 -0.230 0.940	0.800 0.230 0.167 0.978 0.603 0.860 0.492 0.172 0.845 -0.181	-0.737 -0.341 -0.492 1.521 -0.563 0.867 0.975 -0.877 0.050 0.865
38 39 40 41 42	5 7 7 6 8	86 79 79 68 40	7 7 5 6 4	2 4 2 2 3	13 9 8 11 6	18 25 6 14 5	2 3 2 3 2		0.297 0.297 -0.338	1.988 0.367	-0.175	-0.311 -0.607 0.283	2.802 -0.612	-1.583 -0.138	0.137 0.909 -0.817 0.306 -0.845	1.548 1.293 -0.126 0.524 -1.830	-2.038 -1.362 -0.976 -0.877 -0.849

[Figure 3.6.3] Factor Scores PCFA and MLFA after rotation

3.7 Visualizations of FA

R-Code:

FA(PCFA, MLFA) and FA Biplot	
library(psych), principal()	PCFA
library(psych), factanal()	MLFA
<pre>principal(, rotation="varimax") factanal(, rotation="varimax")</pre>	Varimax Rotation
FA	Klpga-PCFAsteps-scree.R Klpga-MLFAfactanal.R Klpga-MLFAvarimax.R airpollution-PCMLFAvarimax-scores.R
FA Biplot	airpollution-PCFAbiplot.R

R-code list of Chapter 3 Factor Analysis		
spearman-PCFA.R	[R-코드 3.2.1]	스피어만의 여섯 과목 성적의 PCFA
klpga-PCFAsteps-scree.R	[R-코드 3.4.1]	KLPGA 선수 성적의 PCFA
5subjects-PCFAsteps.R	[R-코드 3.4.2]	두 가지 시험성적의 PCFA
klpga-MLFAfactanal.R	[R-코드 3.4.3]	KLPGA 선수 성적의 MLFA
5subjects-MLFAfactanal.R	[R-코드 3.4.4]	두 가지 시험성적의 MLFA
klpga-MLFAvarimax.R	[R-코드 3.5.1]	KLPGA 선수 성적에 대한 MLFA의 Varimax 회전 후 인자적재그림
5subjects-MLFAvarimax.R	[R-코드 3.5.2]	두 가지 시험성적에 대한 MLFA의 Varimax 회전 전과 후의 인자적재그림
airpollution-PCMLFAvarimax-scores.R	[R-코드 3.6.1]	LA시 대기오염 자료의 PCMA와 MLFA 의 실행과 비교
airpollution-PCFAbiplot.R	[R-코드 3.7.1]	LA시 대기오염 자료의 PCFA의 회전 전 과 후의 인자적재와 인자점수 행렬도

[R-code 3.4.1] klpga-PCFAsteps-scree.R in [Example 3.4.1]

```
# PCFA Steps for KLPGA
#[Step 1] Data Matrix X
Data1.3.2<-read.table("klpga.txt", header=T)
X=Data1.3.2
rownames < - rownames (X)
p = ncol(X)
#[Step 2] Covariance Matrix S(or Correlation Matix R)
R=round(cor(X),3)
R
 #[Step 3] Spectral Decomposition
 eigen.R=eigen(R)
 round(eigen.R$values, 2) # Eigenvalues
 V=round(eigen.R$vectors, 2) # Eigenvectors
#[Step 4] Number of factors: m
 gof=eigen.R$values/p*100 # Goodness-of fit
 round(gof, 3)
 plot(eigen.R$values, type="b", main="Scree Graph",
            xlab="Factor Number", ylab="Eigenvalue")
```

```
#[Step 5] Factor Loadings and Communality
V2=V[.1:2]
L=V2%*%diag(sgrt(eigen.R$values[1:2]))
round(L, 3)
round(diag(L%*%t(L)), 3)
#[Step 6] Specific Variance : Psi
Psi=diag(R-L\%*\%t(L))
round(Psi, 3)
#[Step 7] Residual Matrix
Rm = R-(L\%*\%t(L) + diag(Psi))
round(Rm, 3)
# PCFA using the principal()
library(psych)
pcfa<-principal(R, nfactors=2, rotate="none")
pcfa
round(pcfa$values, 2)
gof=pcfa$values/p*100 # Goodness-of fit
round(gof, 3)
round(pcfa$residual, 2)
```

[R-code 3.4.3] klpga-MLFAfactanal.R in [Example 3.4.3]

```
# MLFA Steps for KLPGA
# Data Matrix X
Data1.3.2<-read.table("klpga.txt", header=T)
X=Data1.3.2
rownames < - rownames (X)
p=ncol(X)
Z < -scale(X, scale = T)
# Covariance Matrix S(or Correlation Matrix R)
R=round(cor(X),3)
R
# ML Estimation using the factanal()
library(psych)
mlfa<-factanal(Z, factors = 2, rotation="none")
mlfa
# Residual Matrix
L=mlfa$loading[, 1:2]
Psi=mlfa$uniquenesses
Rm = R-(L\%*\%t(L) + diag(Psi))
round(Rm, 3)
```

[R-code 3.5.1] klpga-MLFAvarimax.R in [Example 3.5.1]

```
# MLFA: None and Varimax Rotation for KLPGA
# Data Matrix X
Data1.3.2<-read.table("klpga.txt", header=T)
X=Data1.3.2
rownames<-rownames(X)
p = ncol(X)
# Covariance Matrix S(or Correlation Matix R)
R=round(cor(X),3)
# ML Estimation using the factanal(): None
library(psych)
mlfa<-factanal(covmat=R, factors = 2, rotation="none")
mlfa
# Residual Matrix
L=mlfa$loading[, 1:2]
Psi=mlfa$uniquenesses
Rm = R-(L\%*\%t(L) + diag(Psi))
round(Rm, 3)
```

```
par(mfrow=c(1,2))
# Factor Loadings Plot: None
lim<-range(pretty(L))
plot(L[,1], L[,2],main="Plot of Factor Loadings: None", xlab="f1", ylab="f2",
                         xlim=lim, ylim=lim)
text(L[,1], L[, 2], labels=rownames(L), cex=0.8, col="blue", pos=1)
abline(v=0, h=0)
arrows(0,0, L[,1], L[, 2], col=2, code=2, length=0.1)
# ML Estimation using the factanal(): Varimax
library(psych)
mlfa<-factanal(covmat=R, factors = 2, rotation="varimax") # rotation="none"
mlfa
# Residual Matrix
                                     \hat{\Lambda}^* = \hat{\Lambda} T
L=mlfa$loading[, 1:2]
Psi=mlfa$uniquenesses
Rm = R-(L\%*\%t(L) + diag(Psi))
round(Rm, 3)
# Factor Loadings Plot: Varimax
lim<-range(pretty(L))
plot(L[,1], L[,2],main="Plot of Factor Loadings: Varimax", xlab="f1", ylab="f2",
                         xlim=lim, ylim=lim)
text(L[,1], L[, 2], labels=rownames(L), cex=0.8, col="blue", pos=1)
abline(v=0, h=0)
                                                                     27
arrows(0,0, L[,1], L[, 2], col=2, code=2, length=0.1)
```

[R-code 3.7.1] airpollution-PCFAbiplot.R in [Example 3.7.1]

```
Data2.8.2<-read.table("airpollution.txt", header=T)
X=Data2.8.2
rownames(X)
colnames(X)
p = ncol(X)
n=nrow(X)
Z < -scale(X, scale = T)
# Biplot based on the Singular Value Decomposition
svd.Z <- svd(Z)
U <- svd.Z$u
V <- svd.Z$v
D <- diag(svd.Z$d)
F <- (sqrt(n-1)*U)[,1:2] # Factor Scores Matrix : F
L <- (sqrt(1/(n-1))*V%*%D)[,1:2] # Factor Loadings Matrix : Lambda
C<- rbind(F, L)
rownames(F)<-rownames(X)
rownames(L) < -colnames(X)
# Godness-of-fit
eig <- (svd.Z$d)^2
per <- eig/sum(eig)*100
gof <- sum(per[1:2])
per
gof
```

```
# Biplot: Joint Plot of Factor Loadings and Scores
par(mfrow=c(1,2))
par(pty="s")
lim1 <- range(pretty(L))
lim2 <- range(pretty(F))
biplot(F,L, xlab="f1",ylab="f2", main=" (a)Unrotated Biplot", xlim=lim2, ylim=lim2,
cex=0.8,pch=16)
abline(v=0,h=0)
# Varimax Rotated Biplot: Joint Plot of Rotated Factor Loadings and Scores
varimax<-varimax(L)
Lt = varimax$loadings
T=varimax$rotmat
Ft= F%*%T
biplot(Ft,Lt, xlab="f1",ylab="f2", main=" Varimax Rotated Biplot",
                 xlim=lim2,ylim=lim2,cex=0.8,pch=16)
abline(v=0,h=0)
```