µ¥ÀÌÅÍ ¸¶ÀÌ´×ÀÇ ÀÌÇØ¸¦ À§ÇØ ¼¼¹Ì³ª¿Í ¼ö¾÷À» ÅëÇÏ¿© ¹ßÇ¥µÈ ³»¿ë°ú ¿©·¯ °÷¿¡¼ ¼öÁýÇÑ ³»¿ëÀ» ¿ä¾à, Á¤¸®Çϰí ÀÖ´Ù.
ƯÈ÷, Part IV : Seminars¿¡¼´Â DM Çö¾÷¿¡¼ ±Ù¹«ÇÏ´Â Àü¹®°¡¸¦ ÃÊûÇÏ¿© ¹ßÇ¥ÇÑ ³»¿ë(ppt ÈÀÏÇü½Ä)À» ¼Ò°³Çϰí ÀÖ´Ù.
Part I : Why DM?
1. Data Mining And Statistics; What's the connection?
2. µ¥ÀÌÅÍ ¸¶ÀÌ´×°ú Ä·ÆäÀÎ °ü¸® ÅëÇÕ
3. µ¥ÀÌÅÍ ¸¶ÀÌ´×À» ¼º°øÀûÀ¸·Î ±¸ÇöÇϱâ À§ÇÑ ¿ä°Ç
4. DM »ç·Ê¿¬±¸
5. SAS/E-miner 3.
6. SAS/E-miner Ȱ¿ëÀÇ ¿¹.
Part II : DM Tools
1. Market Basket Analysis
2. Memory-Based Reasoning
3. Automatic Cluster Detection
4. Link Analysis
5. Decision Trees
6. Artificial Neural Networks
7. Genetic Algorithms
Part III : DW, OLAP and DB
1. Data Mining and the Corporate Data Warehouse
2. Where Does OLAP Fit In?
3. Introduction to Data Base
4. Relational Data Base
Part IV : Seminars and Presentations
1. ¸¶ÄÉÆÃ ¸®¼Ä¡¿¡¼ÀÇ Åë°èÇРȰ¿ë: DM°ú Á¶»ç¸¦ ÀÌ¿ëÇÑ CRMÁ¢±Ù
(¹Ìµð¾î¸®¼Ä¡,
¼ö¼®¿¬±¸¿ø ÀÌÀº¼ö)
2. Customer Management¸¦ À§ÇÑ Micro-Segmentation: º¸³Ê½ºÄ«µå Ȱ¼ºÈ Àü·«
(Consodata
Korea, ¼Çì¼± ºÎÀå)
3. A Comparison of Capabilities of Data Mining Tools(2000)
(ºÎ»ê´ëÇб³, ÃÖ¿ë¼®, ÀÌÁ¾Èñ: The 10th Japan and Korea
Joint Conference of Statistics, 95-100 In Beppu, Japan)
4. Comparisons of Clustering, Detection and Neural Ntework in E-miner, Clementine and I-Miner(2001)
(ºÎ»ê´ëÇб³, ÃÖ¿ë¼®, ÀÌÁ¾Èñ: Proceedings of the Spring Conference, 113-118, Korean Statistical Society)